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ABSTRACT
We observe that when network traffic behaviors are repre-
sented in vector spaces as relative frequency histograms of
behavioral features, they exhibit low-rank linear structure.
We hypothesize that this structure is due to the distribution
of flow behaviors following a finite mixture model. Aside
from being of theoretical interest, this hypothesis has prac-
tical consequences: it allows us to make predictions about
the probabilities of future flow behaviors from a handful of
a flow’s initial packets. From observing five initial packets,
we are able to predict the distribution of future packet sizes
and inter-packet intervals with between 70% and 90% ac-
curacy across a variety of network traces. We can predict
which flow will have more packets in pairwise comparisons
with between 65% and 85% accuracy. These practical ap-
plications serve dual functions. They provide highly useful
tools for network management, routing decisions, and qual-
ity of service schemes. However, they also provide evidence
that the hypothesized model gives a correct explanation for
the observed linear structure in real network traffic.

Extended Abstract
This work begins with a particular way of representing flow
behaviors as vectors. The representation is quite simple.
For each feature of a flow, we represent that aspect of the
flow’s behavior as a feature-frequency vector : a vector hav-
ing a dimension for each possible value of the feature and
whose coordinates are the relative frequency of values. For
example, the vector for the distribution of packet sizes of a
flow with four 40-byte and two 145-bytes packets is

size =
1

4 + 2
(4e40 + 2e145). (1)

Different aspects of flow behavior can be represented in this
way, and these representations can be combined by taking
the direct sum of their representation vectors:

flow = size⊕ ival⊕ type⊕ port⊕ pkts. (2)

The features here are packet size and inter-packet interval
distributions, IP protocol type, source and destination port
numbers, and packet count. The behavior of a feature across
a collection of flows can be expressed as a matrix where each
row represents a flow:

Size = [ size1 ; · · · ; sizem ]. (3)

The overall behavior of the collection of flows then becomes
a concatenation of these feature matrices:

X = [ Size Ival Type Port Pkts ]. (4)
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Figure 1: Scatter plots of the two most significant SVD dimen-
sions of the feature-frequency representations of traffic samples
from the six network traffic traces analyzed in our experiments.

When traffic traces are represented like this, a very curious
thing happens: the resulting matrices exhibit a great deal
of linear structure. Specifically, flow behaviors tend to lie
near the union of a small set of low-rank subspaces. Fig-
ure 1 shows this structure visually. These scatter plots show
the first two most significant dimensions of the behavior ma-
trix after reduction via singular value decomposition (SVD)
and projection onto the unit-sum hyperplane.

To explain this linear structure, we hypothesize that the be-
havior distribution for most flows is a mixture of a small set
of “basic behaviors.” Moreover, only even smaller subsets
of these basic behaviors are typically combined with each
other. Under these assumptions, we can express the distri-
bution of each flow’s behaviors as a finite mixture model [1]:

qi(x) =

rX
j=1

wijpj(x). (5)

Here qi and pj are probability density functions, and wij

are nonnegative weights, summing to unity for each i. Equa-
tion 5 is expressed succinctly as matrix multiplication. Writ-
ing Qik = qi(k), Wij = wij , and Pjk = pj(k), we have:

Q = WP. (6)

The number of basic behaviors, r, is the maximum possible
rank of the feature distribution matrix, Q. Moreover, we can
partition the rows of P into classes such that wij1 and wij2

are both non-zero only if j1 and j2 are in the same class.
Thus, each row of Q is associated with exactly one class,
and all the points associated with a class lie in the subspace
spanned by its associated rows in P .

This model explains the structures in Figure 1. Points along
the same low-rank structure are in the same class. A struc-
ture is “generated” by a small set of vertices: points belong-
ing to a structure are near the hull of its vertices. This is
only one possible hypothesis that fits the data. Like any hy-
pothesis, it must be tested. Our prediction technique, aside



Trace Year Type Network

DARTMOUTH 2003 campus Dartmouth College

IETF 60 2004 conference IETF hotel

IETF 67 2006 conference IETF hotel

SIGCOMM 2001 2001 conference SIGCOMM hotel

SIGCOMM 2004 2004 conference SIGCOMM hotel

UCSD 2007 campus UCSD engineering

Table 1: Traffic traces used for analysis and experiments.

from providing a practical application, serves as a hypothe-
sis test: we try to recover the matrices W and P from our
noisy and imperfect observations of Q and use the recovered
model to predict real flow behaviors. If the recovered model
can make accurate predictions, this provides evidence that
our model and hypothesis approximate reality.

From training data we recover estimates, W ∗ and P ∗, of the
factors in Equation 6. To detect the low-rank linear struc-
tures, we use Ma et al.’s algorithm for segmenting multivari-
ate data into subspaces using lossy data coding and compres-
sion [2]. Then we determine the hull points of each linear
structure using nonnegative matrix factorization (NMF) [3,
4]: if Qc is a sub-matrix of rows in the same structure class,
we want to find nonnegative matrices, Wc and Pc, such that
Qc ≈ WcPc. Our reconstructed P ∗ is a vertical concatena-
tion of these Pc matrices, while W ∗ is a row-permutation of
the direct sum of Wc matrices. We use Kim and Park’s al-
ternating non-negative least squares algorithm [4] for rapid
initial convergence, but refine the result using Lee and Se-
ung’s Euclidean algorithm [3]. Good prediction performance
requires special initialization of the NMF algorithms, using
new techniques that we lack room to detail here.

To predict flow behavior, we separate flow features into those
observed and those to be predicted:

Xo = [ Sizeinit Ivalinit Type Port ], (7)

Xp = [ Sizerest Ivalrest Pkts ]. (8)

Sizeinit is the packet size matrix for the first five packets,
while Sizerest is the matrix for the remainder of the packets,
and similarly for inter-packet intervals. From an observation
matrix, Xo, and the recovered model parameters, P ∗, we can
make predictions about Xp. Let P ∗ = [P ∗

o P ∗
p ] be the re-

covered model parameter matrix with separated observable
and predictable features. From an observation matrix for
test data, Xo, we estimate the matrix of weights by mini-
mizing the squared Frobenius error:

W ∗ = argminW ‖Xo −WP ∗
o ‖

2
frob (9)

with the constraint that W be nonnegative. We can estimate
the underlying feature distributions for the flows:

Q∗ = W ∗P ∗. (10)

The“predictable”portion, Q∗
p, contains predictions of packet

size distribution, inter-packet interval distribution and dis-
tribution of packet counts for each flow. To evaluate the
quality of these predictions, we compare the distributions in
Q∗

p to the matrix, Xp, of actual test flow behaviors.

For our experiments, we use randomly sampled traffic from
six network traces. The traces are freely available from the
CRAWDAD trace repository [5]. Details of the traces are
shown in Table 1. We randomly sampled 5000 flows from

pred: size pred: ival mean: ival self: ival self: size mean: size packets

DART 0.8826 0.7642 0.579 0.4452 0.2652 0.1306 0.6492

IE60 0.802 0.7538 0.377 0.3732 0.413 0.1692 0.7344

IE67 0.6724 0.6898 0.3926 0.4008 0.5056 0.2626 0.7148

SC01 0.6916 0.742 0.2014 0.2776 0.3608 0.1306 0.8384

SC04 0.8078 0.7724 0.4716 0.41 0.514 0.2944 0.7156

UCSD 0.819 0.7926 0.433 0.3798 0.3548 0.169 0.6756
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Figure 2: Accuracy rates of various methods of predicting flow
behavior from five initial packets across six data sets.

each trace for training and another 5000 flows for testing.
The results are shown in Figure 2. The left panel shows ac-
curacy rates for predicting packet size and inter-packet inter-
val distributions. Since no previous work attempts to either
model individual flow behavior or predict flow behavior from
initial observations, we compare our prediction technique to
two simple and obvious approaches: predicting the already
observed behavior of each flow, and predicting the average
behavior of the training trace. Accuracy is computed by
comparing the distribution of Kolmogorov-Smirnov (K-S)
test p-values to an empirical ideal distribution of K-S p-
values, taking the maximum deviation from the ideal as the
error rate. The right-top panel shows the accuracy rate for
predicting which flow will have more packets between ran-
dom pairs of flows. Choosing randomly gives 50% accuracy,
which we exceed significantly on all traces.

Our method does not yield perfect predictions, but the non-
deterministic nature of flow behavior implies that it is im-
possible to achieve perfect prediction. Moreover, we do not
know what the inherent upper limit on prediction quality is.
No prior work has provided detailed statistical models of in-
dividual flow behaviors, or attempted to predict individual
flow behavior from initial packets. The fact that this tech-
nique can accurately predict flow behavior from so few initial
packet observations is evidence that our hypothesized mix-
ture model for flow behavior has merit. With improvements
in the algorithms used to recover the model parameters, we
are confident that even better prediction accuracy can be
achieved. Furthermore, the same model can be applied to
traffic classification from flow behavior, and to generation
of realistic synthetic network traffic from collections of trace
data. These applications, however useful, are merely pleas-
ant side effects of the real breakthrough of this work: a real-
istic, detailed statistical model for individual flow behaviors
across whole networks.

REFERENCES
[1] G. McLachlan and D. Peel. Finite Mixture Models. John Wiley

and Sons, New York NY, USA, 2000.

[2] Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation of
multivariate mixed data via lossy data coding and compression.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(9), September 2007.

[3] D. Lee and H. Seung. Algorithms for non-negative matrix
factorization. Advances in Neural Information Processing, 13,
2001.

[4] H. Kim and H. Park. Non-negative matrix factorization based on
alternating non-negativity constrained least squares and active
set method. SIAM Journal in Matrix Analysis and
Applications, 30(2), May 2008.

[5] J. Yeo, D. Kotz, and T. Henderson. CRAWDAD: a community
resource for archiving wireless data at Dartmouth. SIGCOMM
Computer Communication Review, 36(2), April 2006.


