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Mixture modeling expresses probability densities as convex
combinations of constituent probability distributions:

qi(x) =
r∑

j=1

wijpj(x), (1)

Here qi and pj are density functions, and wij are nonnegative
weights, summing to unity for each i. In classical mixture
modeling, the constituent density functions, pj , are assumed
to be from some class of parametric distributions. Various well
established algorithms, typically using expectation minimiza-
tion, can optimally recover the weights, wij , given an observed
sample of values from the qi distributions [1].

In certain settings, however, mixture modeling is desirable,
but the constituent distributions are neither known in advance,
nor can they be assumed to be parametric. In this work, we
demonstrate how, for discrete event spaces, nonnegative matrix
factorization (NMF) can be effectively used to simultaneously
recover both weights and constituent distributions, given a
large collection of variably-sized samples from mixtures.

For discrete event spaces, Equation 1 is expressed succinctly
as matrix multiplication. Letting Qik = qi(k), Wij = wij , and
Pjk = pj(k) we have:

Q = WP. (2)

The problem of inferring both the weights, wij , and constituent
distributions, pj , from a collection of mixtures, qi, is equiva-
lent to finding the factors W and P given Q. All three matrices
are constrined to be row-stochastic, meaning that all entries are
nonnegative, with rows summing to unity.

The problem of finding such a factorization is known as
nonnegative matrix factorization. Such factorizations are not
unique, so perfect recovery of W and P cannot generally be
achieved. On the other hand, any exact factorization of Q, is
an equally valid mixture model for the given data. Since a
variety of NMF algorithms have been proposed, this problem
is partially solved. Several difficulties remain, however:

1) NMF is known to be NP-hard; thus, all efficient algorithms
are heuristic, and may not yield adequate results;

2) Q is not known exactly, only a finite sample for each
distribution row of Q is observed;

3) The samples for the rows may not have uniform size.
This list is not exhaustive, and we will address and discuss
other challenges as well.

Our motivating application is mixture modeling for traces of
network flows, whose distributions of packet sizes and inter-
packet intervals seem to be effectively modeled as discretized
mixture models, using NMF [2]. In this setting, there are
several particularly challenging aspects:

1) The distribution of sample sizes is heavy-tailed, having a
few very large samples, and many very small samples;

2) The constituent distributions are not uniformly repre-
sented: the most prevalent distribution has much larger
average weights than the next, and so on.

We will demonstrate using simulated data why both of these
properties make factor recovery particularly difficult.

To evaluate the effectiveness of NMF techniques for discrete
mixture model recovery, we use synthetic data, since otherwise
the true factors are unknown. To generate synthetic data, we
use saw-tooth patterns as constituent distributions, densities of
which are shown in Figure 1. These distributions are visually
distinctive and not well-approximated by standard parametric
distributions. The Pareto distribution is the classic heavy-tailed
distribution, and describes the distribution of flow sizes in
network trace studies [3], [4]. Accordingly, we choose sample
sizes for each synthetic mixture from a Pareto distribution.
Our synthetic weight matrices are also generated such that the
prevalences of the component distributions — i.e. the column
sums of W— follow a power law. Figure 2 is a matrix plot of
sample rows of randomly generated weights.

In short, we find that none of the existing NMF algorithms
can accurately recover the constituent distributions used to
generate synthetic mixtures. Recovered P∗ distributions for
Lee and Seung’s algorithms [5], and Kim and Park’s alter-
nating nonnegative least squares (ANLS) algorithm [6] are
shown in Figure 3, dramatically illustrating their failure to
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Figure 1: Discrete distributions used to generate synthetic mixtures.

Figure 2: Transposed matrix plot of 100 sample weight vectors.



(a) Lee & Seung, Euclidean Algorithm

(b) Lee & Seung, Kullback-Leibler Algorithm

(c) Kim & Park, ANLS Algorithm

Figure 3: Recovered P∗ distributions for standard NMF algorithms,
with random initialization and perfect knowledge of Q.

Figure 4: P0 computed using SVD/k-means initialization.

accurately reconstruct the original distributions. It is well
known that these algorithms may not converge to a globally
optimum factorization. The quality of the end result is largely
dependent on the matrices used to initialize the algorithms,
which typically are random nonnegative matrices. To find a
better factorization, we use a variation of the most promising
initialization technique proposed by Langville et al. [7]:

1) Let Q = USV ′, the singular value decomposition (SVD),
2) Use k-means to find r clusters of columns in V ,
3) Let W0 be corresponding column centroids in Q,
4) Let P0 be nonnegative minimizing ‖Q−W0P0‖F .

Figure 4 shows that even without any further refinement, this
initialization technique already recovers the overall shape of P
remarkably well. Although this recovery appears visually close
to optimal, there are differences in shape which limit the qual-
ity of the approximation W0P0. Intuitively, this initialization
sits on a ridge above a deep valley, where the perfect recovery
lies. If care is not taken, however, the NMF algorithms may
descend the wrong side of the ridge, moving away from the
optimal recovery rather than toward it. This is precisely what
happens when any of these algorithms are applied naı̈vely but
initialized with W0 and P0, shown in Figure 5.

Through a combination of intuition and trial and error, we
have found that applying the ANLS algorithm for a few dozens
of iterations, followed by the Kullback-Leibler algorithm,
followed finally by the Euclidean algorithm results in perfect
recovery, with error limited only by how many iterations of
the Euclidean algorithm one is willing to wait for.

The above results all assume perfect knowledge of Q. In real
situations, where discrete mixture models must be recovered
from experimental data, there is highly imperfect knowledge
of Q. Only a finite sample of values from each qi distribution
are observed. These samples may be of different sizes, and
in many situations, the vast majority of the samples are very

(a) Lee & Seung, Euclidean Algorithm

(b) Lee & Seung, Kullback-Leibler Algorithm

(c) Kim & Park, ANLS Algorithm

Figure 5: Recovered P∗ distributions for standard NMF algorithms,
with SVD/k-means initialization and perfect knowledge of Q.

Figure 6: Accurate recovery of P∗ from sampled data.

small, many even consisting of only a single value. Can the
basis matrix, P , still be recovered under such circumstances?
Our meta-algorithm can accurately recover P from sampled
data when applied to appropriate estimates of Q.

The simplest estimate of Q is based on the sample histogram
matrix, H: Hik is the number times the value k was sampled
from the distribution qi. We can approximate Q by the row-
stochasticized version of H , where each row is divided by
its sum; call this matrix C. If nothing else was known about
Q, we could not do much better than this approximation. We
know, however, that Q has rank r: we find the best rank r
approximation of H using SVD. Why apply SVD to H rather
than C? By using SVD on H , we are giving each row weight
proportional to its sample size in computing our approxima-
tion, thus giving more impact to more precisely known rows.
The SVD approximation matrix may have negative values;
since we know Q has none, we truncate these to zero.1 Let
A denote this nonnegative, nearly rank r approximation of H ,
and let be R its row-stochastization.

To successfully apply our meta-algorithm to sampled data,
the following steps may be applied:

1) Compute W0, P0 from SVD/k-means on R.
2) Iterate ANLS on R starting with W0, P0.
3) Let W∗ be nonnegative minimizing ‖H −W∗P∗‖F .
4) Iterate Kullback-Leibler on H starting with W∗, P∗.
5) Iterate Euclidean on H starting with W∗, P∗.

This meta-algorithm can recover P accurately, even when Q is
sampled with infinite variance (heavy-tailed) and prevalences
of constituent distributions follow a power law. An accurate
recovery from sampled data is shown in Figure 6.

1Projection into the nonnegative orthant may cause the approximation to
become no longer rank r. It will, however, remain nearly rank r, in the sense
that it will have r large singular values and the rest much smaller.
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