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Abstract We propose a representation of wireless
workload patterns as large, sparse matrices and provide
a method for stochastically generating experimental
workloads from a given matrix. The essential prop-
erty of the algebraic representation is that the sum-
mation of vectors naturally yields a faithful description
of the aggregate behavior of the corresponding flows.
This deceptively simple property allows us to express
many common concepts from traffic modeling suc-
cinctly in terms of a few linear transformations. The
algebraic representation has many benefits: (1) it makes
the meaning of generally understood but vague con-
cepts, such as “uniform behavior,” mathematically pre-
cise and unambiguous; (2) it allows us to see clearly,
through the lens of linear algebra, the implications of
common modeling assumptions; (3) the implementa-
tion of traffic models becomes unprecedentedly simple
and orthogonal, requiring only a handful of high-level
matrix operations, which can be freely composed; (4)
the vast body of algebraic theory and highly optimized
numerical software may immediately be applied to
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traffic modeling. We use the paired differential simula-
tion methodology introduced by the authors in previous
work to experimentally demonstrate that the general
matrix model accurately reproduces realistic network
performance (Karpinski et al. 2007a, b). We use the
same experimental methodology to explore the impli-
cations of various assumptions and simplifications that
are commonly made in traffic modeling.
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1 Introduction

More than 20 years of research in analysis and modeling
of network traffic have yielded tremendous advances
in our understanding of the complex behaviors that
emerge from the interaction of millions of humans and
computers on the Internet and in local-area networks
(LANs). Both traffic analysis and realistic workload
generation, however, remain active areas of research
with many unanswered questions. One of the major
challenges of modeling whole-network traffic is the
interdependence of packet, flow,1 and node behaviors.

1We use the common definition of a flow as a sequence of
packets sharing the same “5-tuple”: IP protocol type, source and
destination nodes, and TCP/UDP port numbers.
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Three types of simplifying assumptions are commonly
applied in both analysis and generation:

1. Uniform: that traffic properties are uniformly dis-
tributed. For example, assuming that all nodes in a
network have equal probability of being the source
or destination of each flow. Another common ex-
ample is the assumption that all packet sizes and
inter-packet intervals are the same; this is com-
monly known as the “constant bit-rate” (CBR)
model.

2. Marginal: that traffic properties share a single,
common marginal2 distribution across the entire
network, and individual values are drawn indepen-
dently and unconditionally from this shared dis-
tribution. An example is assuming that a single
distribution of packet sizes describes all flows in a
network, as compared to equipping each flow with
its own specific distribution of sizes.

3. Conditional: that traffic behaves marginally within
equivalence classes defined by certain conditions.
The assumption, for example, that all flows ema-
nating from a common source node share the same
packet size distribution is a conditional model, con-
ditioned on the source nodes.

We would be arguing against a straw man if we implied
that researchers who apply these assumptions actually
believe them to be true. They clearly are not: different
nodes initiate and receive drastically different numbers
of packets and flows; flows have drastically different
packet size distributions. Simply considering intuitive
examples of common behavior illustrates this amply:
BitTorrent users vs. occasional email checkers; down-
loading a large file vs. typing in an SSH session.

If no one actually believes that assumptions of uni-
formity and marginality accurately describe network
behavior, then why are these assumptions so common?
There are two reasons. The first is that these assump-
tions drastically simplify both traffic analysis and work-
load generation, making them tractable problems. The
second is that there are no generally accepted alterna-
tives for representing and simplifying traffic patterns
that allow effective analysis and generation without
assuming uniformity or marginality.

2The statistical term “marginal” refers to the margins of actuarial
tables formerly used for statistical computations. The rows and
columns of the table represent possible values of two properties.
Each entry in a table contains a count of the number of events
falling into the joint category for that row and column. The
margins contain sums of the rows and columns, thus giving the
unconditional distributions of each property.

Fundamentally, uniform, marginal and conditional
models are applied so that network traffic behavior can
be represented using a manageable collection of em-
pirical or analytical statistical distributions. Reduction
in representation size and complexity makes analysis
and generation feasible. From this perspective, three
questions immediately present themselves:

1. Do these assumptions distort the metrics we are
trying to analyze, replicate, and predict?

2. Can we represent “unreduced” network behavior
so that analysis and generation remain tractable?

3. Are there better ways to simplify and reduce the
representation of network behavior?

This paper answers all three questions. We begin, how-
ever by answering the second problem and using our
solution to address the other two questions.

To represent unreduced network behavior practi-
cally, we propose the concept of a linear representation
of network traffic. A linear representation of traffic
maps each flow to a vector, such that the following
linearity condition is satisfied:

The sum of the representations of two flows is a
vector that represents the aggregate behavior of
the two flows.

The complete behavior of a network is expressed as a
matrix of such vectors, having one row per flow. Linear
representations express full network behavior, without
imposing assumptions of uniformity or marginality, yet
still allow effective traffic analysis and workload gen-
eration. We present a specific linear representation,
called the general matrix model (GMM), and demon-
strate experimentally that this model generates wireless
workload that accurately reproduces the performance
characteristics of real wireless network traffic.

To address the other two questions, we begin with
a simple observation. In linear representations of traf-
fic, uniform, marginal and conditional assumptions are
assertions of equality between the rows and columns
of the traffic matrix. Moreover, real traffic matrices
can be transformed into uniform, marginal and con-
ditional forms through very simple matrix multiplica-
tions. These transformations, however, are extremely
destructive: the matrices are degenerate with very low
rank, so multiplication destroys almost all information
in the original traffic matrix. We demonstrate exper-
imentally that this loss of information is not benign:
uniform and marginal traffic models severely distort
crucial network performance metrics.

Once traffic is represented linearly, alternatives to
assuming uniformity or marginality become apparent.
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Figure 1 Examples illustrating real versus uniform behaviors at
the node, flow and packet levels. a, b Example node behaviors.
The width of each line is proportional to the logarithm of the
number of flows between the nodes (zero is the Internet gate-
way). Uniform and trace flow behavior examples are plotted in
c and d. The time axis indicates when flows start and end; the

width of each flow line is proportional to the logarithm of its
data rate. e Uniform (i.e. CBR) packet behavior with the trace
of an actual flow. In the uniform model, the cumulative data sent
increases smoothly over time, whereas in the actual packet trace,
the transmissions are variable both in size and in inter-packet
interval, leading to a “lumpy” cumulative data plot

We argue that matrix factorization, which is nonde-
structive and does not assume uniformity or marginal-
ity, is far superior to multiplication for this problem.
To demonstrate this approach, we use nonnegative ma-
trix factorization (NMF) [7] to find a low-dimensional
approximation of the packet size and inter-packet in-
terval matrices of a real traffic trace. This factoriza-
tion extracts a small set of “basic behaviors” from the
traffic matrix and simultaneously explains each flow’s
observed behavior as a mixture of these basic behav-
iors. Although the factorization is computed without
examining port numbers, basic behaviors nevertheless
correspond to intuitive expectations for protocols. We
find basic behaviors corresponding to typical network
activities, including file transfer, typing via SSH, web
surfing, ping traffic, peer-to-peer, and others.

The rest of the paper is organized as follows. In
Section 2 we discuss motivation and related work. The
notion of linear representation is presented in Section 3
and the general matrix model is presented in Section 4.
Our experimental and analytical methodology for eval-
uating traffic models is presented in Section 5, while the
results of our experiments are explained and analyzed
in Section 6. The ramifications of these results are
discussed in Section 7. Finally, in Section 8, we conclude
with a summary of this research and its impact on the
future of wireless networking.

2 Motivation and related work

The interaction of network users and applications with
the lower layers of the networking stack is character-
ized by where, when, how much, and to whom data is
transmitted. The joint pattern of traffic generation and

mobility through time and space completely determines
the effect of network usage on the lower levels of the
stack. This is due to the data-agnostic nature of the
protocol stack: by design, IP networks treat all data in
the same manner [2].3 The credibility of conclusions
derived from simulation or experimental deployment
depends crucially on our confidence that the models
used to generate traffic in experiments are sufficiently
realistic. Figure 1 illustrates through examples how
drastically different network traffic appears under as-
sumptions of uniformity at different levels of behavior.
These examples are take from a wireless trace recorded
at an IETF meeting; details of the trace are given in
Section 5.2. Marginality assumptions are not as visu-
ally striking, but as we will demonstrate, they distort
the performance characteristics of networks almost as
much, and sometimes more, than uniform models.

While our work is not inherently specific to wireless
networks, since the modeling techniques developed are
equally applicable to traffic in wired networks, the
results are of special importance to wireless research.
Realistic traffic models have a drastic impact on exper-
imental results in wireless networks [5, 6]. This is pri-
marily because wireless networks are locally resource
constrained. Compare this with the typical situation
in wired LANs, where gigabit Ethernet and modern
routers can easily handle all but the most intense levels
of traffic. If a wired network operator expects larger
volumes of traffic on a conditional basis, the solution

3This is violated by some quality of service (QoS) schemes. How-
ever, we can simply add QoS metadata—such as traffic classes
or urgency flags—to our models of user behavior and the rest of
our arguments remain valid. The network is still disinterested in
the exact content of the data being transported; only the QoS
metadata is relevant.
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is to upgrade the hardware, not to change the network
protocols. In wireless networks, on the other hand, the
physical medium cannot be upgraded; protocols must
be improved to make better usage of the medium. The
ability to perform experiments with realistic workload
is a vital part of the ongoing process of improving
wireless protocols. Without realistic workload mod-
els for experiments, performance comparisons may be
misleading or even completely wrong [6].

Paxson and Floyd observed [8] that the interaction
between endpoint behavior and the network conditions
is inherently closed-loop in the sense that the emergent
behavior is governed by a closed feedback loop. In the
case of most non-TCP applications, this feedback does
not occur: an open-loop model suffices. Hernández-
Campos’s dissertation [3] addresses in great depth how
to model the feedback between the network and typical
TCP applications. The author shows how to abstract an
application’s behavior from a TCP trace and replay it
in a manner that accurately reflects how typical applica-
tions react in response to different network conditions.
This research has subsequently been turned into a TCP
flow generation tool called TMIX [12]. The acronym is
somewhat misleading: TMIX does not provide models
for application behaviors or for mixtures of applications
in networks. Rather, it provides the ability to repro-
duce accurate closed-loop dynamics for a single TCP
flow given an application behavior model as input. Our
research complements this perfectly: we provide the
means to analyze traffic and generate realistic whole-
network application mixtures which can then serve as
the necessary inputs to TMIX.

The two most prominent general traffic generation
frameworks are Harpoon and D-ITG. Harpoon [11]
uses a traffic trace for self-training, and can subse-
quently generate synthetic traffic with certain statistical
properties based on the original trace. The proper-
ties reproduced are the empirical distributions of the
following: “file size, inter-connection time, source and
destination IP ranges, [and] number of active sessions.”
Harpoon exemplifies the uniform and marginal mod-
eling approaches. Source and destination nodes are
treated marginally: empirically derived marginal fre-
quencies of sources and destinations are used to choose
endpoints independently for each flow. Flow sizes (i.e.
file sizes) are likewise treated marginally: each flow’s
total byte count is sampled from a marginal distribution
of flow sizes. UDP flows are modeled as being constant
bit-rate; TCP flows are all treated as file transfers,
making them effectively uniform with bit-rate deter-
mined by TCP dynamics. Inter-connection times are
sampled from a single empirically derived marginal dis-
tribution. While Harpoon may be sufficiently realistic

for the intended purpose of generating Internet back-
bone traffic,4 for generating local-area traffic in wireless
experiments, it is not. Previous research has shown
that uniform packet behavior models used in Harpoon
drastically distort vital performance metrics at all levels
of the protocol stack [6]. This paper shows, moreover,
that marginal models, like those used in Harpoon, also
severely misrepresent performance metrics in wireless
networks.

Like Harpoon, D-ITG [1] exemplifies uniform
and marginal modeling assumptions. However, unlike
Harpoon, D-ITG does not derive models from real
traffic. Packet behavior can be modeled using stan-
dard statistical distributions (“constant, uniform, nor-
mal, Cauchy, Pareto, exponential, etc.”). Guidance is
not provided, however, for choosing among these dis-
tributions, choosing parameter values, or selecting a
mixture of distributions across a network. Flow and
node behaviors are not specified at all, but rather left
to the user’s discretion. The focus of this project is
primarily on the engineering challenge of generating
very large volumes of synthetic traffic and injecting it
into networks in a distributed fashion. While D-ITG
provides the mechanism for generating large volumes
of traffic, it does not provide any real guidance as to
what traffic to generate.

Hernández-Campos et al. [4] have defined the state
of the art in parametric modeling of wireless traffic
patterns. They use rigorous statistical methods to fit
parametric models to a number of properties of wireless
traffic. Flow arrivals fit a non-stationary Poisson model;
flow inter-arrival times fit a Lognormal distribution;
the number of flows per session fits a BiPareto model;
flow sizes also fit a BiPareto model. The statistical
analysis fitting these parametric models is thorough and
convincing. The models, however, are marginal: a single
statistical model applies to all flows and nodes; packet
behavior is not considered. Each node has a different
number of flows assigned to it, but otherwise nodes
are identical. Moreover, all flows, regardless of source
node, are statistically identical: flow sizes are drawn
from a single marginal distribution, and nothing else
distinguishes them. Yet, intuitively it is clear that dif-
ferent nodes in real networks have drastically different
tendencies for flow size, flow rates, and packet behav-
ior. Such interdependent behaviors cannot be captured

4Even this is unclear: generated traffic is only compared with
trace traffic using the very same metrics that are explicitly spec-
ified as part of the model. Unsurprisingly, the distributions of
sampled metrics closely match the distributions those metrics
were sampled from. Realism is not double-checked using other
statistical metrics or actual performance metrics.
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using marginal modeling. In this paper, we demonstrate
that this inability is not harmless: treating all flows and
nodes statistically identically severely distorts crucial
wireless performance metrics in experiments. We also
provide sorely needed methods of representing and
analyzing traffic patterns without making uniform or
marginal assumptions about network behavior.

This work uses the technique known as paired dif-
ferential simulation to evaluate the realism of modi-
fied or synthetically generated wireless workloads. This
technique was proposed and subsequently refined by
Karpinski et al. [5, 6]. They introduce the notion of
sufficient realism, and propose paired differential sim-
ulation as an experimental methodology based on the
standard technique of pairing control and test subjects.
We describe the technique in Section 5. In the first
paper [5], they explore various ways of modifying trace
traffic patterns, as a form of sensitivity analysis to deter-
mine which aspects of network behavior are essential
and must be preserved in realistic models, and which
aspects can be discarded as inessential. Of particular
interest is their conclusion that detailed time-series
packet behavior for flows is inessential: it suffices, for
each flow, to have accurate unconditional distributions
of packet sizes and inter-packet intervals; sufficiently
realistic flow behavior can be reconstructed from these
distributions by repeated independent sampling. In the
second paper [6], Karpinski et al. explore the impact
of a broad variety of uniformity assumptions at the
packet, flow and node levels of behavior. They find that
all uniformity assumptions are detrimental, inducing
significant and often extreme misrepresentation of a
broad variety of wireless performance metrics at every
level of the protocol stack. Moreover, they show, using
OLSR and AODV, that uniform traffic models can
completely invert the relative performance of network
protocols.

3 Linear representation of traffic

The traffic workload pattern in a network is a collection
of IP packets between hosts in the network sent at cer-
tain times. It is standard in network analysis, however,
to aggregate sequences of packets sharing the same
“5-tuple”: IP protocol, source and destination nodes,
and source and destination TCP/UDP port numbers.
Such a sequence of packets is called a flow. The traffic
pattern of an entire network is simply the collected
behaviors of all flows occurring in the network.

The behavior of a flow as it affects the network is
characterized by the following properties: its IP pro-
tocol type (TCP, UDP, ICMP, etc.); its source and

destination nodes; its start time; and the specific sizes
of packets and intervals between their transmission.
We begin our exposition of traffic representation by
formalizing these properties mathematically as sets:

� types: type ∈ Y = {1, . . . , 255} ⊂ N

� nodes: src,dst ∈ N = {1, . . . , n} ⊂ N

� times: start ∈ T = R

� sizes: size ∈ Z = {0, . . . , MTU} ⊂ N

� intervals: ival ∈ V = R
+ ∪ {∞}.

There are 255 possible IP types (0 is reserved for IPv6).
The number n is simply the total number of nodes in the
network being modeled. MTU is the maximum trans-
fer unit of the network (typically around 1,500 bytes).
We formalize the packet behavior of a flow as a pair
of infinite sequences of packet sizes and inter-packet
intervals:

sizes = 〈size1, size2, . . .〉 ∈ ZN (1)

ivals = 〈ival1, ival2, . . .〉 ∈ VN. (2)

Since flows contain only a finite number of pack-
ets, there exists a number of packets, pkts ∈ N, for
each flow. Since flows are finite, we require that
the sequences sizes and ivals satisfy the following
requirements:

∀ k : sizek > 0 ⇐⇒ k ≤ pkts (3)

∀ k : ivalk < ∞ ⇐⇒ k < pkts. (4)

Actual packet sizes are required to be positive because
we are modeling application layer data transfer: empty
data transmission requests are non-events. The send
time of the kth packet can be expressed as

timek = start+
k−1∑

i=1

ivali. (5)

Equation 4 implies that this will be finite if and only if
k ≤ pkts. Finally, we formalize the space of flows:

F = Y × N 2 × T × N × ZN × VN. (6)

We write a generic element of F as

flow = 〈type, src,dst, start,pkts, sizes, ivals〉 ∈ F . (7)

Let 2F denote the power set of F , and F∗ ⊆ 2F the set
of all finite sets of flows:

F∗ = {
X ∈ 2F : |X| < ∞}

. (8)

A traffic sample is simply an element of F∗. We will
refer to elements of F∗ interchangeably as “traffic sam-
ples” or “traffic instances.”
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Having chosen a mathematical formalization of net-
work traffic, we may now define the notion of a linear
representation of network traffic.

Definition 1 A linear representation of network traffic
is a pair, 〈V, ψ〉, where V is a vector space and ψ is a
function, ψ : F∗ → V, such that

∀ T ∈ F∗ : ψ(T) =
∑

flow∈T

ψ(flow). (9)

In plain words, every finite collection of flows is
represented by a vector that is the sum of the ele-
ments representing the individual flows in the collec-
tion. The careful reader will notice that any function
F → V uniquely determines a linear representation:
Eq. 9 uniquely extends the function to all of F∗. Rep-
resenting flows by arbitrary vectors, however, is not
particularly useful or interesting. We focus instead on
meaningful representations, where collections of flows
are represented by vectors that naturally describe the
aggregate behavior in some manner. In the next section,
we clarify these concepts through examples.

3.1 Examples of linear representations

Our first example is the packets-bytes-duration (PBD)
representation. The representation is pbd : F∗ → R

3,
mapping flow �→ 〈p, b , d〉 ∈ R

3, where

p = pkts, b =
p∑

i=1

sizei, d =
p−1∑

i=1

ivali. (10)

This representation encapsulates the information nec-
essary to reproduce a CBR version of each flow: pack-
ets have payloads of �b/p� bytes, and are sent every
d/p seconds.5 Given two flows with behavior vectors x1

and x2, their sum as vectors,

x1 + x2 = 〈p1 + p2, b 1 + b 2, d1 + d2〉, (11)

provides an appropriate description of the aggregate
behavior of the two flows together. Similarly, their
average, 1

2 (x1 + x2), has the average number of pack-
ets, bytes, and duration, which is precisely what the
“average behavior” of the two flows should intuitively
be. In contrast, a “packets-payload-interval” represen-
tation, expressing the CBR parameters directly, does
not have this property: the sum of average payloads
is not the overall average of payloads; likewise for

5There are many schemes to correct the discrepancy in bytes
when p does not divide b evenly. The simplest is to ignore it;
we leave more complex schemes to the reader.

intervals. In the PBD representation, the linearity prop-
erty leads to natural descriptions of aggregate behav-
ior through vector addition, whereas in the packets-
payload-interval representation, vector addition is
“unnatural.”

The PBD representation is highly lossy: it discards
most of the information detailing the behavior of each
flow. At the other extreme, we can give a “perfect”
representation of flows, that allows us to completely re-
construct each flow from its representation. With care,
the sum of representations of flows can still naturally
describe their aggregate behavior. Let the representa-
tion be Φ : F∗ → X , where

X = R
255 × R

n × R
n × L2[R] × L2[R]. (12)

Here L2[R] is the vector space of real functions, R
R =

{ f : R → R}, with the usual norm [10]. We define

Φ(flow) = 〈
etype,esrc,edst, f, g

〉
, (13)

where ek is the kth standard basis vector, and f, g ∈
L2[R] are functions defined by

f (t) =
pkts∑

k=1

{
1 if t ≥ timek

0 if t < timek,
(14)

g(t) =
pkts∑

k=1

{
sizek if t ≥ timek

0 if t < timek.
(15)

Thus, f and g are both integer-valued, monotonically
increasing step functions, giving the cumulative number
of packets and total bytes sent, respectively, at time t.
From the representation, Φ(flow), of a single flow, we
can readily recover its type, source, destination, and the
transmission times and sizes of packets.

Why is Φ natural in the same sense that the PBD
representation is natural? Suppose we have a traffic
sample, T ∈ F∗. The first component of Φ(T) is a 255-
dimensional vector, whose coordinates are a histogram
of the number of times each flow type occurs in T.
Similarly, the second and third components of Φ(T)

are n-dimensional histograms of the number of times
each node occurs as source and destination. The last
components are step functions, like f and g. Vector
addition in L2[R] dictates that these functions give the
total number of cumulative packets and bytes sent,
respectively, over all flows in T. Thus, summation of
vectors under the representation Φ yields a natural and
useful description of the aggregate behavior of flows.

Consider, for contrast, if we had represented flow
type simply by type ∈ N instead of etype ∈ R

255. The nat-
ural numbers containing type can readily be embedded
into R

1, which is a vector space. However, the addition
of vectors is highly unnatural. The sum of protocol
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numbers is meaningless: two TCP flows plus five ICMP
flows does not equal a single UDP flow, despite the
fact that 2 · 6 + 5 · 1 = 17. The summation of vectors in
the representation �, on the other hand is 5 e1 + 2 e6,
indicating the frequency with which each type occurred.

Both of the example representations discussed here
can be applied in practice. The PBD representation
naturally allows us to compute aggregate and average
CBR behaviors of collections of flows. With a suit-
able machine encoding of step-functions, Φ can be
implemented and used in practice. It provides com-
plete information about individual flows and highly
detailed (though not complete) information about col-
lections of flows. Representations that preserve even
more information about traffic instances can readily
be constructed. We turn now, however, in a different
direction, and introduce a specific linear representation
that strikes a practical balance in fidelity between pbd
and Φ.

4 The general matrix model

The PBD representation of flows uses three dimensions
to encode the behavior of each flow, while Φ uses
255 + 2n dimensions, plus the continuum of dimensions
of two Banach spaces (i.e. the two copies of L2[R]). In
this section, we define a representation, φ, that splits
the difference and uses a large but finite number of
dimensions to represent each flow. Once the vector
representation of each flow is defined, we may con-
struct matrices of representation vectors, with a row
for each flow in a traffic sample. We call the matrix
representation of network traffic the general matrix
model (GMM). Having expressed network behavior in
terms of matrices, we can very simply and efficiently
compute a broad variety of network behavior prop-
erties using standard matrix operations. Furthermore,
we can express uniformity and marginality assumptions

about behavior as equality constraints between the
rows and columns of the traffic matrix. Moreover, we
can transform unconstrained traffic instances into uni-
form, marginal, or conditional approximations via right
or left multiplications by easily computed matrices.

The general strategy for defining φ is to divide the
descriptive properties of each flow into bins (one per
value for properties that are discrete already and re-
quire no compression), and map values in each bin to
a standard basis element of R

d, where d is the number
of bins. In this scheme, representation vectors are ef-
fectively histograms, with coordinate values in each di-
mension counting items falling into the corresponding
bin. Table 1 lists the properties that are used to define
φ, together with the quantization and dequantization
functions. Each quantization function takes a possible
property value as input and maps it to an index value in
{1, . . . , d}, where d is the number of bins, i.e. dimension,
for the property in question.

The histogram-vector approach produces some rep-
resentations of properties that are not immediately
intuitive, and may seem to use an excessive number of
representation dimensions. However, this approach au-
tomatically satisfies the “naturalness” criterion for lin-
ear representations. That is, the representation, φ(T),
naturally describes the aggregate behavior of flows
in T. Perhaps even more importantly, arbitrary lin-
ear combinations of vectors can be meaningfully in-
terpreted as describing some realizable, hypothetical
traffic instance. In Section 4.5 we will describe how to
generate flows from arbitrary composite representation
vectors.

4.1 Model specification

The quantization functions specified in Table 1 allow us
to define the representation φ : F∗ → R

N :

φ(flow) = f = 〈t, s, d, a, b, z, v〉, (16)

Table 1 Quantization and dequantization functions for properties of flows

Property (prop) Domain Quantization (Qprop) Dim. Dequantization (Q−1
prop)

IP type type ∈ {1, . . . , 255} y �→ y 255 x �→ �x�
Source node src ∈ {1, . . . , n} s �→ s n x �→ �x�
Destination node dst ∈ {1, . . . , n} d �→ d n x �→ �x�
Start time start ∈ [0, tmax] t �→ max

{
1,

⌈
da

(
t

tmax

)⌉}
da x �→ (tmax)

(
x

da

)

Bytes (flow size) bytes ∈ {1, . . . , bmax} b �→ 1 +
⌈
(db − 1)

(
b−1

bmax−1

)β
⌉

db x �→ max

{
1,

⌈
(b max − 1)

(
x

db

) 1
β

⌉}

Packet size size ∈ {1, . . . , MTU} z �→ z dz x �→ �x�
Inter-packet interval ival ∈ [0, vmax] v �→ max

{
1,

⌈
dv

(
v − vmin

vmax−vmin

)γ ⌉}
dv x �→ vmin + (vmax − vmin)

(
x

dv

) 1
γ

The domain specifies the set of possible input values to the quantization function. Quantized values are elements of {1, . . . , d}, where d
is the dimension specified. The dequantization function maps a real value, x ∈ [0, d], back into the original domain.
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where N = 255 + 2n + da + db + dz + dv and vectors
are

t = ek k = Qtype(type)

s = ek k = Qsrc(src)

d = ek k = Qdst(dst)

a = ek k = Qstart(start)

b = ek k = Qbytes(bytes)

z = ∑
ek k ∈ {Qsize(sizei) : i ≤ pkts}

v = ∑
ek k ∈ {Qival(ivali) : i < pkts}.

The functions Qprop are the respective quantization
functions for each property. If there are f flows in
a traffic instance, then the collective behavior can be
described with seven matrices—one for each property;
the rows of each matrix are the behavior vectors of
the flows, indexed in some chosen order. We use the
following notations for the matrices and indexed flow
vectors:

� types: T = (ti) = (tij) ∈ R
f×255

� sources: S = (si) = (sij) ∈ R
f×n

� destinations: D = (di) = (dij) ∈ R
f×n

� start times: A = (ai) = (aij) ∈ R
f×da

� sizes in bytes: B = (bi) = (bij)∈ R
f×db

� packet sizes: Z = (zi) = (zij) ∈ R
f×dz

� inter-packet intervals: V = (vi) = (vij) ∈ R
f×dv .

The total behavior matrix is the horizontal concatena-
tion of these component matrices:

F = [
T S D A B Z V

] ∈ R
f×N. (17)

We call this total representation the general matrix
model. While it is by no means the only possible repre-
sentation of traffic in terms of matrices, as we demon-
strate in the following sections, many common traffic
modeling assumptions can be expressed succinctly and
precisely in terms of transformations or conditions of
the GMM and its components. Furthermore, realistic
workload can be generated from matrix instances.

4.2 Choosing constants

Before continuing with less mundane topics, we must
briefly address our choices of constants appearing in
Table 1. The externally predetermined constants are:
dz = MTU = 1, 500, determined by the wireless net-
work medium; b max ≈ 109 MB, determined by the size
of the largest flow in our trace data; tmax = vmax = 600,
determined by our experimental methodology which
slices traces into 10-min scenarios; and vmin = 10−6,
determined by the time resolution of our trace. For

lack of a better choice, we have simply chosen to use
the same number of quantization bins as packet size
for the unfixed dimension constants: da = db = dv =
1, 500. Arguments can certainly be made for other
choices, but this choice appears to work adequately in
practice.

Two other unspecified constants appear in Table 1:
β and γ . These parameters are non-linear scaling ex-
ponents that allows the quantization to smoothly shift
from fine-grained resolution at the low end of the
spectrum to coarse-grained resolution at the high end.
We have chosen β = 1/2.7 and γ = 1/3 because these
values yield desirable dynamic ranges: from single bytes
at the lower end to megabytes at the high end for flow
sizes; from microseconds to seconds for intervals.

4.3 Computation of common properties

Having defined a specific matrix representation of net-
work behavior, we turn now to deriving useful expres-
sions for commonly used network properties in terms
of these algebraic building blocks.

4.3.1 Packet size and inter-packet interval statistics

From the matrices Z and V we can compute a variety of
statistics about packet sizes and inter-packet intervals.
The row vectors in the matrices may represent indi-
vidual flows or composites of many flows. The compu-
tations require knowing the values that each matrix
column represents, whether size or interval. The vec-
tors of representative values for Z and V respectively
are:

σ = 〈1, 2, 3, . . . , dz〉 (18)

τ = 〈
Q−1
ival

(
k − 1

2

)〉dv

k=1. (19)

The packet count, total byte and total duration vectors
are computed as

�pkts = Z1 = V1 ∈ R
f (20)

�bytes = ZσT ∈ R
f (21)

� ivals = VτT ∈ R
f . (22)

Here 1 is a row vector of all ones.6 Packet count and
total bytes values are exact; the total durations are only
approximate because information is irretrievably lost in
the quantization process. Using these vectors of totals,

6Through out this paper, 1 denotes a matrix of all ones; dimen-
sions of the matrix are inferred by context. Where necessary, we
disambiguate the dimensions by explicitly specifying the dimen-
sions of the final matrix product, as we do here.
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we may readily compute the average packet sizes and
inter-packet intervals:

z̄ = �bytes ./�pkts = ZσT ./ Z1 (23)

v̄ = � ivals ./�pkts = VτT ./ V1. (24)

The symbol ./ here represents element-wise division of
vectors, as it does in Matlab.

4.3.2 Inter-node communication graphs

The total number of source flows for each node is
given by the vector ST1 ∈ R

n, and the total number of
destination flows is given by DT1 ∈ R

n. The number
of flows between each pair of nodes in the network is
expressed by the matrix product STD ∈ R

n×n. That is
(STD)ij is the number of flows from node i to node
j. Interpreting this sparse matrix as a weighted graph
immediately yields the source-destination flow commu-
nication graph. Figure 1 gives two visual examples of
such graphs. Similar graphs counting other quantities
can readily be computed by inserting the appropriate
weighting matrix. For example, we may compute the
inter-node packet transmission graph:

STdiag(�pkts)D ∈ R
n×n. (25)

Here �pkts is the byte vector defined in Eq. 20, and
the “diag” operator gives the square, diagonal matrix
with the given vector of values on its diagonal. Similar
graphs for total bytes and total duration of flows may
be computed using �bytes or �ival in place of �pkts.

4.4 Expression of common modeling concepts

The simplifying assumptions made by most traffic mod-
els can be classified into three categories. We use the
terms uniform, marginal, and conditional to describe
these classes of assumptions. They are all assumptions
about the “sameness” of aspects of network behaviors;
they differ, however, in whether they make stipulations
about uniformity within each flow, across all flows, or
within groups of flows. In the following sections, we ex-
plore how various modeling concepts can be expressed
in the framework of the general matrix model. Models
are expressed as transformations that convert arbitrary
traffic matrix instances into similar ones that satisfy the
model’s assumptions. These transformations later allow
us to evaluate the effect of each model’s simplifications
on the realism of generated workloads.

4.4.1 Uniform modeling

The concept of uniformity, as used here, entails that
certain properties of each flow are assumed to be statis-
tically or deterministically uniform. Examples include:
assuming that each flow’s packets have the same size
and inter-packet interval (i.e. the CBR flow model);
assuming that each node is equally likely to be the
source of a given flow; assuming that all start times for
a flow are equally likely.

Since uniform behaviors entail homogeneity of prop-
erties with respect to each flow individually, a trace
matrix can be transformed to a matrix satisfying the
model’s assumptions via right matrix multiplication.
Right multiplication mixes the elements within each
row, and if the mixing weights are uniform, the result
is uniform behavior. For example, to make the roles of
the nodes with respect to each flow statistically identi-
cal, we transform S and D:

S′ = rs(S1) = 1
n S1 ∈ R

f×n (26)

D′ = rs(D1) = 1
n D1 ∈ R

f×n. (27)

The “rs” operator scales each row to sum to unity, thus
making the entire matrix row-stochastic; in this case,
this is equivalent to scaling by 1/n. These transforma-
tions of S and D make all the values in each flow’s
row identically the average of the original n values.
As another example, the constant bit-rate (CBR) flow
model, in its strictest sense, is an intra-flow model,
which stipulates that all the packets in each flow behave
identically, having identical sizes and intervals; thus
each flow’s bit-rate is constant, as the name implies.
The strict CBR model can be easily expressed with
the packets-bytes-duration (PBD) model used as an
example in Section 3. The pair of matrices [Z V] is
transformed to PBD form using the vectors defined in
Section 4.3.1: [Z V]	 ∈ R

f×3, where

	 =
(

1 σ 0
0 0 τ

)
∈ R

(dv+dz)×3. (28)

Figure 1 graphically depicts examples of uniform be-
haviors as compared to realistic behaviors from traces.

4.4.2 Marginal modeling

Marginality is an orthogonal concept to uniformity:
the distribution of some property is identical across
all flows. For example, if we determine a distribution
of flow sizes across the entire network and assume
that this distribution applies independent of other flow
properties, this is a marginal model for flow size. Mar-
ginal behavior is effected by left multiplication by a
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matrix with uniform columns. This specific example
is generated by left-uniformizing the flow size ma-
trix: B′ = (1/ f ) 1B. The traffic models proposed by
Hernández-Campos et al. are all marginal: they pro-
pose certain network-wide parametric distributions for
start times, flow sizes and the number of flows per node.
These models do not account for non-independence
between these and other flow properties. We discuss
this limitation and its implications when we analyze our
experimental results.

4.4.3 Conditional modeling

The final form of homogenization we consider is con-
ditionality. This is a restricted form of marginality:
we may assume that marginal distributions apply to
all the flows in certain groupings. For example, we
can provide a distribution of flow sizes on a per-
source basis. That is, each source node can have
its own distribution, and the sizes of its flows are
drawn from that distribution, independent of their
other properties. This is simply accomplished by left-
multiplication by a non-uniform matrix. For example,
to make flow behavior uniform per source, consider the
“source-conditioning” matrix: STS ∈ R

n×n. This matrix
has (STS)ij = 1 if and only if flows i and j have the same
source node. To condition flow behavior by source, we
left-multiply by the stochasticized source-conditioning
matrix:

F′ = rs(STS)F. (29)

In this case, rows do not have the same sums, so the
“rs” operator is not equivalent to scalar multiplication.
Per destination uniformity can be achieved similarly,
replacing S with D.

The GMM has the benefit of making the condition-
ing of behaviors completely explicit. It also allows us
to easily define intermediate choices. If we wish, for
example, to make the behavior of each flow a weighted
average of the composite behaviors of its source and
destination nodes, we can express this easily:

F′ = ((1 − α) rs(STS) + (α) rs(DTD))F. (30)

The parameter α allows us to smoothly vary the weight-
ing of the source and destination behaviors. Source-
only behavior is given by α = 0; destination-only by
α = 1; to weight source and destination equally, take
α = 1/2.

4.5 Traffic generation

Given an instance of the general matrix model, how do
we produce an actual workload from it? Each row of

the model is used to randomly generate the behavior
of a single flow. To do this, we use the “dequantiza-
tion” functions listed in Table 1. The dequantization
procedure works as follows. Let f be a row of the traffic
matrix, and let prop be a property. Write fprop for the
corresponding component vector of f. Chose an index
value k ∈ {

1, . . . , dprop
}
, randomly, with weight given

by the coefficients of fprop. Choose u ∈ [0, 1] uniformly
at random. Then x = k − u ∈ [0, d ], with probability
of lying in the interval [i − 1, i] proportional to the
coefficient of ei in fprop. The dequantization function for
prop, namely Q−1

prop, will map the value x back into the
appropriate range of property values for prop.

The procedure above allows us to sample random
values for each property in accordance with the behav-
ioral description implied by f. This allows us to stochas-
tically generate a sequence of packets in accordance
with a row from an arbitrary GMM matrix instance
using the following procedure:

1. Sample random source and destination node pairs.
Since a flow must have distinct source and destina-
tion nodes, the sampling of endpoints must be done
jointly, avoiding collisions. The simplest technique
is the rejection method: if the same node is chosen
for both source and destination, reject that pair and
begin the selection process again.

2. Next, randomly sample the number of bytes.
3. The packet size and inter-packet interval vectors,

z and v, allow us to compute the expected average
packet size and inter-packet intervals for the flow
(see Section 4.3.1); call them z̄ and v̄. From these,
together with the flow size in bytes, we estimate the
expected duration of the flow: d̄ = b v̄/z̄.

4. Randomly sample a start time for the flow. Ensure
that the start time plus the expected duration, d̄,
does not exceed the maximum simulation time for
the workflow by using the rejection method.

5. The first packet is sent at the chosen start time.
The size of each packet is determined by sampling
a random size value. The interval until the next
packet is determined by sampling a random interval
value. The packet stream ends when the number of
bytes allocated to the flow have been emitted or
when the packet emission time exceeds tmax. The
last packet is only the size of the remaining number
of bytes.

Some remarks about the procedure:

– For some vectors in R
f×N , it may be impossible

to choose distinct source and destination nodes or
flow sizes and start times satisfying the procedure.
However, for any vector that is a sum of vectors
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representing valid flows—i.e. ones having distinct
source and destination nodes and feasible combina-
tions of start time, duration, and packet behaviors—
the procedure will terminate.

– Because the representation φ models the seven
properties independently of each other, it is im-
possible to do better than to sample the properties
independently, modulo the requirements of the pro-
cedure. In the case of a row which is simply a repre-
sentation of an actual flow, this makes no difference,
except for the generation of packets (which are
modeled independently). In the case of composite
rows, however, this implies that flow properties are
modeled independently of each other.

Despite these remarks, we will show in our experimen-
tal evaluation that this procedure generates sufficiently
realistic wireless workloads [5, 6].

5 Experimental methodology

To evaluate whether traffic models are realistic or not,
we use the method of paired differential simulation in-
troduced in our previous work on traffic modeling [5, 6].
Paired differential simulation is based on the standard
scientific technique of controlled experimentation. The
hypothesis we are testing is that a given synthetic model
accurately reproduces the performance metrics exhib-
ited by real network traffic. To test this hypothesis, we
conduct a series of paired experiments and compare
the results for each test subject with a correspond-
ing control subject. In this case, the experiments are
wireless network simulations, and the subjects are real
or synthetic workload instances. The control group is
the set of simulations where the workload is an actual
traffic trace, recorded as described in Section 5.2. The
test group is a set of simulations where workload is
synthetically generated using a simplified traffic model.
The experiments are paired: for each control simula-
tion, there is a synthetic workload, with behavior as
similar to the control as model will allow, against which
the results are compared. The output of the series of
experiments are paired values of performance metrics
for each simulated scenario: one from the control, one
from the test model.

5.1 Traffic models

The first model we evaluate is the general matrix model
itself. We derive the matrix representation directly
from the trace data and use it to generate workload
as described in Section 4.5. This serves to test whether

the GMM is sufficiently general: if it accurately repro-
duces all performance metrics across the collection of
scenarios simulated, this provides strong evidence that
GMM captures enough of the detail of trace behavior
to be considered a sufficiently general representation of
network traffic patterns.

After validating the GMM, we explore the effects
of various uniformity, marginality, and conditioning as-
sumptions on the realism of traffic models. The uniform
models are the most common, being the simplest both
to conceptualize and to implement: simply make no
distinction between start times, source or destination
nodes. Choose them at random, using no information
from reality other than the number of nodes and the
possible range of start times. We do not evaluate uni-
form packet behavior because it has been sufficiently
discredited in our previous work.

In more sophisticated modeling work, where unifor-
mity is discarded as too simple a model for behavior,
marginality is often applied instead. It is assumed—
often implicitly—that marginal models are adequate to
capture the essential aspects of network behavior. We
put that implicit assumption to the test here. How well
do perfect marginal models represent real behavior?
When we say that our marginal models are “perfect,”
we mean that they are nonparametric and calculated
directly from trace behavior. These are the marginal
models that most accurately describe the trace traffic,
because they are directly derived from it and make
no parametric approximations. This provides an upper
bound on the quality of marginal models in general,
since parametric marginal models are derived, in turn,
as simplifications of these nonparametric marginal be-
haviors. Table 2 provides a complete list of all the traffic
models we compare in our evaluation.

5.2 Trace data

Our general methodology is to compare performance
metrics in simulations using real traffic patterns from
traces to the same metrics in simulations using a vari-
ety of trace-based models and synthetic traffic models
defined using the general matrix model. We use a 24-h
trace recorded in an infrastructured 802.11 g wireless
LAN with 18 access points, deployed at the 60th In-
ternet Engineering Task Force meeting (IETF60), held
in San Diego during August of 2004. The traffic trace
was captured using tcpdump at a single router, through
which all wireless traffic for the meeting was routed, in-
cluding traffic between wireless nodes. The snap length
of the capture for each packet was 100 bytes, allowing
IP, ICMP, UDP and TCP headers to be analyzed.
We limit our work to the 24-h sub-trace recorded on
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Table 2 Matrix-based traffic models used in paired differential simulation experiments

Model Transformation Description

GMM — The general matrix model
Time uniform A′ = (1/n) A1 All start times are equally likely
Node uniform S′ = (1/n) S1 D′ = (1/n) D1 All nodes are equally likely as source or destination
Full uniform All uniform transformations All start times, sources and destinations are equally likely
Time marginal A′ = (1/ f ) 1A Start times chosen from marginal distribution of start times
Size marginal B′ = (1/ f ) 1B Flow size (bytes) is chosen from marginal distribution of sizes
Node marginal S′ = (1/ f ) 1S D′ = (1/ f ) 1D Source and dest. chosen marginally, independent of other properties
Packet marginal Z′ = (1/ f ) 1Z V′ = (1/ f ) 1V Packet behavior is variable bit-rate, marginal across all flows
Full marginal All marginal transformations Applies all the marginality assumptions of the above four models
Source conditional F′ = rs(ST S) F Flow behaviors are aggregated on a per source-node basis
Dest. conditional F′ = rs(DT D) F Flow behaviors are aggregated on a per destination-node basis

Wednesday, August 4th. This trace contains a broad
variety of behaviors and entails a very large volume
of traffic: 2.1 million flows, 58 million packets, and
52 billion bytes.

We do not assume or claim that the traffic found
at IETF60 is representative of conference settings in
general. The observed behaviors are also unlikely to
resemble those found in a typical commercial or res-
idential setting. We have chosen this trace, however,
because within it can be found behaviors resembling
many different types of wireless usage cases. Figure 2
shows the wide variations in the number of active flows
and nodes over the course of the trace. In the night
and morning hours, the traffic patterns are similar to
those one might find in a moderately trafficked business
or residential area. During working group sessions, we
see highly concentrated, heavy usage patterns. At the
zenith of activity, over 800 users, 33 thousand flows,
and 1 million packets are seen in a single 10-min trace
segment. At the nadir, a lone node sent only a single
61-byte packet over the course of 10 min. All levels
of activity between these extremes are represented.
Moreover, the mix of traffic types observed changes
dramatically over the course of the day, providing a
wide representation of possible blends of behavior. This
heterogeneity and extreme range of behaviors makes
the IETF data set ideal for this evaluation. The variety
of activity gives us greater confidence that success or
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Figure 2 The number of active nodes and flows over time

failure of traffic models is not tied to any specific net-
work condition, but is broadly and generally applicable.

Before using the traces, it is necessary to extract
application-level behavior from the trace header data.
First, we split the trace into individual packet flows.
A flow is a series of packets sharing the following
five attributes: IP and transport protocols (raw IP,
ICMP, TCP, UDP); source and destination IP ad-
dresses and TCP/UDP port numbers. Next, the quan-
tity of application-initiated data contained in each
packet is calculated. For non-TCP packets, this quantity
is simply the size of the transport-layer payload, but
for TCP the calculation is more complicated: only new
data transfers, explicitly initiated by the application,
are counted. Data retransmitted by TCP is disregarded,
and empty ACKs are ignored. SYN and FIN flags in
packets (even empty ones) are counted as a single
byte each, since they are explicitly signaled by the
application.

5.3 Simulations

We use the Qualnet wireless network simulator (ver-
sion 4.0.1) to perform our experiments. We simulate a
stationary multi-hop 802.11 g network using the Ad hoc
On-demand Distance Vector (AODV) routing proto-
col [9], with nodes placed randomly in a square field
with sides of 150 m but a radio range of only 20 m—both
in accordance with an indoor network environment. In
addition to the active nodes corresponding to trace IPs,
half as many passive “infrastructure” nodes are added
to each simulation: these nodes initiate no data and
simply serve as additional network relays. Our simu-
lations resemble multi-hop mesh networks of the kind
that are increasingly studied and deployed for delivery
of broadband access in residential, corporate and con-
ference settings. We do not attempt to reproduce the
physical environment of the original wireless network,
nor do we simulate mobility. The only aspect of the



Mobile Netw Appl

original network’s behavior that is reproduced is the
total pattern of network-wide traffic.

There are a number of potential objections to this ap-
proach. We use single-hop trace data to drive multi-hop
simulations; the physical environment, node mobility,
handover behavior, and closed-loop dynamics of the
original wireless setting are not faithfully reproduced.
One must keep in mind, however, that the goal of
this research is not to understand the conditions of the
original network. Rather, we are using the traffic behav-
iors observed as examples to help us better understand
how different types of workload can affect performance
metrics. In particular, we aim to understand how real
workload compares with common synthetic traffic mod-
els. Of course, the reason for such objections is that net-
working researchers understand that the many aspects
of behavior interact with each other in a complex and
nearly inextricable manner. However, before we can
hope to understand the interaction between workload
and other features affecting network behavior, we must
study traffic patterns alone, and learn to model them
with reasonable accuracy in the absence of additional
complicating factors. Accordingly, in this study, we
detach application level traffic patterns from the other
factors influencing network conditions, and study them
in isolation.

The 24-h trace is split into 144 10-min segments, each
of which serves as the basis for a set of simulations using
different traffic models. The traffic models range from
a completely realistic trace-driven model, to a standard
CBR traffic model. Various partially synthetic interme-
diate models, described in Section 5.1, are simulated to
study the impact of different aspects of traffic behavior
on network performance. To preserve the fairness of
the performance comparison, we keep as many features
as possible constant across different traffic models. The
traffic generated by each synthetic model preserves as
many characteristics from the original trace as pos-
sible, within the constraints of the model. Moreover,
the following features are preserved across all models:
the number of wireless nodes, the number of flows, the
number of application-initiated data units sent, the total
bytes of application data sent, and the average flow
duration (and therefore the average data rate).

In our previous work, we approximated TCP with
a pair of half-duplex UDP flows [5, 6]. For this work,
we have implemented a new Qualnet application driver
that allows trace-driven full-duplex TCP flows. This
allows us to accurately reproduce the full dynamics of
TCP feedback. Moreover, raw IP, UDP and TCP flows
are implemented using the same code, guaranteeing
that all traffic is simulated uniformly and that all per-
formance metrics are aggregated in the same manner.

5.4 Performance metrics

We have selected six performance metrics to present
here. They are commonly used as indicators of net-
work performance at the application, network, and link
layers of the protocol stack:

1. Application: average end-to-end delay, packet de-
livery ratio, received throughput.

2. Network: AODV control overhead (RREQ/RREP/
RERR), packets dropped in routing queues.

3. Link: 802.11 control overhead (RTS/CTS/ACK).

These metrics are commonly used to evaluate wire-
less protocols. We have examined a broad variety of
additional wireless network performance metrics, and
although we do not have room to present or discuss
them here, the results shown are representative of the
overall realism of the traffic models.

6 Results

Our simulation results are summarized in Fig. 3. Each
subfigure shows a single performance metric. The dis-
tribution of log-ratio error values for each traffic model
is visualized with a box-and-whisker plot. The box in-
dicates the range from the 25th to 75th percentiles of
values, while the “whiskers” indicate the full range, ex-
cluding outliners (which are shown as isolated points).
These plots allow immediate assessment of realism: a
good traffic model should have error values that are
tightly clustered around the center, with a small, evenly
balanced box, and relatively small whiskers. Addition-
ally, the mean and median markers should be close
to the center. It should be noted that the error scale
is logarithmic, so even a slight increase in spread or
deviation from the center indicates a disproportion-
ately large decrease in model quality. Non-logarithmic
scale markers are shown above each plot; the values
indicate the factor of over- or under-representation for
the performance metric.

The primary result is that the GMM accurately re-
flects the performance of the trace data it is based
on. It has small, centered error bars for every per-
formance metric presented here, as well as for those
we have looked at otherwise. This is an essential re-
sult, since otherwise, GMM is at best a shaky foun-
dation for further modeling work. With these results,
we can be assured that if we can approximate the
matrix for a given example of trace traffic, then we
have also approximated the original trace behavior. In
a sense, this result is a reduction of the general traffic
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Figure 3 Box-and-whisker plots of log-ratio error values for
all metrics and traffic models. The lower axis indicates the log-
ratio, while the upper axis shows raw ratio values. Each box
contains the central majority of log-ratio values: the left and right
bounds are at the 25th and 75th percentiles. The dark middle line
indicates the median value, while the diamond marks the mean.

The whiskers (dotted lines) extend to the furthest non-outlier
values, while the points beyond that are outliers. The notch in
the middle of each bar indicates a 95% confidence interval for the
true underlying median value; if two notches do not overlap, they
are very unlikely to have the same median

modeling problem to a more tractable matrix modeling
problem.

It is worth noting that GMM has competition from
a few of the time-simplified models: the time marginal
and time uniform model both do approximately as well,
and in some cases better, for the metrics examined.
Hernández-Campos et al. found strong evidence that
session arrivals followed a time-varying Poisson arrival
process, meaning that other than large scale time-vary-
ing arrival rate and very small scale clustering of flows
within sessions, the overall flow arrival rate is fairly
smooth. We suspect that on the scale of minutes to tens
of minutes in which our simulations exist, it is sufficient
to model both flow and session arrivals uniformly. This
result indicates that the precise temporal placement of
flows is not highly sensitive: they tend to be relatively
evenly spaced out at short time-scales, and network
performance is not sensitive to changes in start-time on
that scale.

Not all marginal models have such a benign effect
on the accuracy of performance metrics. The worst
offender by far is the size marginal model. This model
distorts behavior at every level, by more than a factor
20 in 25% of scenarios in the case of routing queue
packet drops. This is a highly significant result because
modeling flow size using a network-wide marginal dis-
tribution is precisely what Hernández-Campos et al.,
for example, attempt. This result informs us that this
approach is doomed to failure: flow size cannot be
assigned without considering its relation to other flow
properties; source and destination nodes, and packet
behavior at the very least.

The packet marginal model is another offender, al-
beit not as egregiously. The direction of the misrep-
resentations in this case, however, is more dangerous:
received throughput is overestimated by more than
three times, 75% of the time. On the other hand,
AODV control overhead is underestimated by half on
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average. Such serious misrepresentations are especially
noteworthy given the apparently innocuous assumption
applied by this model: the packet marginal model is
essentially a standard variable bit-rate (VBR) packet
behavior model, using the empirical network-wide dis-
tributions of packet sizes and inter-packet intervals.
Otherwise the model matches the original trace behav-
ior exactly. And yet these drastic distortions occur. In
our previous work, we have shown similarly drastic mis-
representations to occur when CBR packet behavior
is assumed [6]. This result indicates that to reproduce
accurate network performance, we must provide packet
behaviors on a more granular level: each node or even
each flow must be assigned a “custom” packet behavior
by some means.

These strong negative results for two fundamental
and very common marginal models provide severe lim-
its on the realism that can be achieved through marginal
modeling. Traffic modeling research must move beyond
simply finding parametric models for marginal distrib-
utions of network-wide properties. Realistic behavior
cannot be generated using these distributions alone.
Something must be captured about the interaction be-
tween the elements of flow behavior.

Finally, we turn to the conditional models. These
demonstrate neither exceptionally good nor exception-
ally bad behavior. That the conditional models should
be similar to the full marginal model but somewhat
more realistic is entirely expected: conditioning is a
restricted form of marginal modeling, where each group
of flows has its own marginal distribution. In these
cases, the flows are grouped by source or by destina-
tion. Neither source nor destination conditioning ap-
pears to out-perform the other: they perform identically
in each case; neither is perfect, but both are better
in general than any marginal or uniform model. The
source/dest. conditional models tend to err in the same
direction as the full marginal model, but in a few cases
where the aspects of marginality lead to errors in differ-
ent directions, the outcome follows one of the aspects
more than others. In the case of received throughput,
for example, the packet marginal tendency to overes-
timate error overshadows the tendency of the other
marginal aspects to underestimate. Overall, we see that
the conditional models are more realistic than other
models, but this is effect occurs only as the number
of nodes—i.e. the number of conditioning classes—
approaches the full rank of the original traffic matrix.
In our discussion, we present and demonstrate a far
more compelling method of reducing and simplifying
the representation of the behavior of large collections
of flows.

7 Discussion

Although we have shown it to be sufficiently realistic
for driving wireless simulations, the general matrix
model is not intended to be a final model used by
networking researchers. Nor is it intended to be the
ultimate perfect model of network behavior. Rather
it serves as both a research tool and a stepping stone
to better understanding of network traffic. Because it
captures so much detail about traffic sample—without
making assumptions of uniformity or marginality of
flow behavior—it serves as a basis for deriving more
advanced models that preserve more of the original be-
havior of networks than any uniform or marginal model
ever can. The first important role it plays is in allowing
us to succinctly mathematically express common mod-
els. All of the traffic models included in this paper are
implemented in only 19 lines of Matlab code, applying
simple matrix transformations to the GMM representa-
tion of traffic. Through the lens of linear algebra, we see
why uniform, marginal and even conditional models fail
to adequately capture the gestalt behavior of networks:
these simplifying assumptions force us to ignore most
of the information present in a trace. In what follows,
we address limitations of the results presented in this
paper, but conclude with an exciting and promising new
technique for traffic analysis that amply demonstrates
the potential of linear representation of network traffic.

7.1 Generality of results

A significant limitation on the generality of our re-
sults is that they are based on a single data set from
IETF60—albeit a large and varied one. It is possible
that traffic in this trace happens to produce network
performance that is unusually dissimilar to standard
traffic behavior. This data set, however, represents a
highly heterogeneous collection of network usage be-
haviors, from slow and steady off-peak usage, to ex-
tremely heavy peak usage: over 800 users, 33 thousand
flows, and 1 million packets in a single 10-min trace
segment. Despite the broad variety of behaviors, the
results are consistent: in all types of usage scenarios,
uniform and marginal models, and to a lesser degree
conditional ones, systematically skew important perfor-
mance measurements at all levels of the network. While
the precise results for other data sets might differ,
it is very unlikely that these traffic models will hap-
pen to accurately reproduce realistic performance in
other experiments. This paper provides strong evidence
that better traffic models are needed for performance
evaluations. Thus, while it is necessarily limited, our



Mobile Netw Appl

evaluation points us strongly in the direction away from
uniform and marginal models.

Another potential concern about generality is the
relatively limited set of performance metrics evaluated.
As mentioned in Section 5.4, we have evaluated a broad
variety of performance metrics—28 in all. The metrics
evaluated here were selected both because they are
among the most commonly used in evaluations, and
because they are representative of the results for other
metrics. In general, metrics at the same level of the
protocol stack tend to behave in related ways: they

may be positively or negatively correlated, but if one
metric is severely distorted, it is unlikely that others are
left intact. The direction of the distortion of metrics is
highly sensitive to the experimental setup; the presence
of error, however, is not. In other words, models that
are sufficiently realistic in one experimental setup tend
to be sufficiently realistic in other experiments; models
that misrepresent performance metrics in certain cases
tend to do so in other cases as well. The direction of
the distortion may change, but the presence or absence
of accuracy does not. See previous work using the

Figure 4 The ten most
prevalent components of flow
behavior as pairs of packet
payload size and of
inter-packet interval
distributions. The
distributions are shown as
cumulative distribution
functions: the x-axis
represents payload size (in
kilobytes) or inter-packet
interval duration (in
log-seconds, base 10),
respectively; the y-axis
indicates the probability a
value occurring, less than or
equal to the x value. The
behaviors are ordered in
descending rank of how many
packets they explain; to the
left, each behavior’s rank is
indicated, together with the
percentage of total packets
associated with it, and the
cumulative percentage of
packets explained. To the
right of each behavior is a pie
chart showing the breakdown
of associated packets by
protocol, as determined by
well-known port numbers.
Pie slices are only labeled if
they constitute at least 3% of
associated packets
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same technique for evaluating realism for further exam-
ples with different experimental conditions and more
performance metrics considered [5, 6].

7.2 Computational complexity and overhead

Another potential concern about the approach of linear
representation is the additional computational over-
head it may induce in experimental settings. Large ma-
trix representations of traffic models are certainly more
computationally costly than simpler models. Currently,
however, realistic local-area traffic modeling is an un-
solved problem. The purpose of this work is to establish

how traffic can be represented and generated realisti-
cally at all, not how it can be done most efficiently. We
observe, however, that generating application traffic for
a simulation takes orders of magnitude less CPU-time
than running the simulation itself. Therefore, traffic
generation complexity is considered a non-issue.

A related issue is the significant simulation time
incurred when experiments use realistic volumes of
traffic. Indeed, this is a problem: we have run our
simulations on a 64-node Itanium cluster, and the ex-
periments still take weeks to complete. Given the cur-
rent state of the art in simulators and CPU power,
however, this problem is unavoidable. Including model

Figure 4 Continued
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preparation times, running simulations with uniform or
marginal models takes negligibly less time than running
simulations using realistic models like the GMM. One
of the possible effects of this research, however, may
be the ability to classify and catalog a realistic set of
“exemplary” traffic scenarios for various applications.
Such a catalog is far from existing, but its existence
would allow researchers to run far fewer simulations
to achieve incomparably more general and reliable
results.

7.3 Nonnegative factorization of packet behavior

It remains to show how we can simplify and reduce
the representation of network behaviors without mak-
ing unwarranted and manifestly false assumptions of
uniformity or marginality of network behaviors. In
Section 4.4, we observed that application of unifor-
mity and marginality assumptions to traffic instances
is equivalent, in the GMM, to right and left multipli-
cation, respectively, by matrices of rank one. These
transformations destroy almost all of the information
in the original traffic matrix. Conditional models are
equivalent to left-multiplication by somewhat less de-
generate matrices, but they achieve realism only by
approaching the GMM itself. In this section we describe
a matrix factorization technique that can provide an
approximate low-rank representation of the original
traffic without assuming uniformity or marginality. This
technique not only allows us to simplify and analyze
traffic without destroying the information content, but
also leads us to a deep analytical understanding of
network behaviors that matches our intuitive under-
standing of typical modes of network behavior.

We present here preliminary results from applying
nonnegative matrix factorization (NMF) to the packet
behaviors of real flows. Recall from Section 4 that the
matrices Z and V represent the packet size and inter-
packet interval histograms of a collection of flows. We
apply NMF to the concatenation of these matrices,
P = [Z V] ∈ R

f×(dz+dv). NMF attempts to approximate
P as the product of nonnegative matrices:

P ≈ W�H, (31)

W ∈ R
f×b is column-stochastic, � ∈ R

b×b is diagonal
with descending diagonal entries, and H ∈ R

b×(dz+dv) is
row-stochastic. The inner dimension, b ∈ N, must be
determined as well. What is the interpretation of such
a factorization? The rows of H are basic behaviors—
pairs of packet size and inter-packet interval distrib-
utions, such that each flow’s packet behavior can be
approximated as a linear combination of these basic
behaviors. Specifically, the matrix M� gives the mixing

Table 3 Components of flow packet behavior, ranked in order of
prevalence, with percentage of packets explained

Rank Description Well-known ports

1 26% Download HTTP, IMAPS, SSH
2 14% SSH Typing SSH
3 9% Web surfing HTTP, SSH
4 9% ??? ICMP, HTTP, Gnutella
5 8% ??? Everything
6 7% Gnutella control Gnutella, SSH, HTTP, other
7 7% Download HTTP, Gnutella, other
8 6% Ping ICMP, Gnutella
9 6% Download HTTP, other
10 3% Gnutella server Gnutella, other

Also shown are our interpretation of each behavior and well-
known port numbers associated with each.

coefficients for each flow. The diagonal entries of �

have a special meaning as well: they are the number of
packets associated with each basic behavior. Thus the
basic behaviors are sorted in descending order of how
much traffic they explain.

The striking results of applying nonnegative matrix
factorization to P are shown in Fig. 4. Twelve basic be-
haviors suffice to explain all the traffic in a “toy” sample
of 4138 flows. The pairs of packet size and inter-packet
interval distributions are almost immediately recogniz-
able as resembling intuitive modes of network behav-
ior. The first basic behavior, for example, has all packet
sizes near the MTU, while intervals are smoothly dis-
tributed around a fraction of a millisecond. This is what
we would expect from downloading large files; and
indeed, the breakdown of packets by port number bears
out this interpretation—almost all of the traffic is HTTP
server traffic, with small slivers of IMAP and SSH
server traffic. The second basic behavior is equally in-
tuitive: tiny packets with frequency distributed around
0.1 s—this is all interactive SSH traffic, as indicated by
the associate pie chart. The other behaviors are listed in
Table 3 with interpretations. The true significance of
this result lies in the fact that NMF succeeds in classi-
fying flows by network behavior completely automat-
ically, not only without using port numbers, but also
without any information about the number or kind of
plausible interpretations. The algorithm not only agrees
with our intuition about network behavior, but exceeds
it by discovering real but unknown behaviors awaiting
interpretation.

8 Conclusions

We have presented a fundamentally new, algebraic way
of representing traffic patterns in local area networks.
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We call this representation the general matrix model.
Each flow of a traffic collection is represented as a
single high-dimensional vector with components rep-
resenting the IP protocol type, source and destination
nodes, start time, flow size, and packet behavior. The
essential property of the algebraic representation is that
standard vector operations compute natural and use-
ful descriptions of aggregate behavior over the collec-
tion of flows represented. Our experimental validation
demonstrates that the general matrix model accurately
reproduces performance characteristics of real traffic.

The benefits of a performance-preserving algebraic
representation are multifold. The algebraic forms of
the simplifying assumptions made by many common
modeling approaches provide unprecedented clarity
and coherence to a complex and confusing subject.
For example, assumptions that various aspects of flow
behavior are stochastically or deterministically uniform
all take the same form algebraically: left matrix mul-
tiplication. The other major class of common simpli-
fying assumptions made by traffic models is to apply
some marginal behavior across the entire collection of
flows or to disjoint subsets of the flows. Such simpli-
fications correspond to right matrix multiplication in
GMM. Because of the simplicity and clarity that the
algebraic structure brings to the subject, we can see
that both common types of simplifying assumptions
are naïve and simplistic. Our experimental results bol-
ster this conclusion: both uniform and marginal mod-
els significantly misrepresent many important network
performance metrics. With the general matrix model,
however, we stand poised to use the powerful tools of
modern linear algebra to develop general, elegant and
effective models of network behavior.
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